Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau

Z.-D. Feng a,b,⁎, L.Y. Tang c, H.B. Wang d, Y.Z. Ma a, K.-b. Liu e

a MOE Key Laboratory of Western China's Environmental Systems and College of Resource and Environmental Sciences, Lanzhou University, Lanzhou 73000, China
b Department of Earth and Environmental Studies, Montclair State University, Upper Montclair, NJ 07043, USA
c Nanjing Institute of Geology and Paleontology, CAS, Nanjing 210008, China
d College of Resource Science and Technology, Beijing Normal University, Beijing 100875, China
e Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA

Received 4 May 2005; received in revised form 20 April 2006; accepted 27 April 2006

Abstract

The western part of the Chinese Loess Plateau has experienced a series of environmental changes during the Holocene. A desert-steppe of late glacial was succeeded by a forest-steppe from 8850 to 7540 14C years BP, and a Pinus-dominated forest occupied the landscape from 7540 to 6560 14C years BP. A deciduous forest of high density and diversity existed from 6560 to 5790 14C years BP. Afterwards the vegetation changed to a Pinus-dominated forest-steppe (5790–4950 14C years BP) and then to an Ulmus-dominated forest-steppe (4950 to ~4000 14C years BP). The vegetation subsequently changed to a steppe from ~4000 to 3120 14C years BP and further to a desert-steppe from 3120 to 2900 14C years BP. After a period of vegetation improvement (steppe) from 2900 to 2460 14C years BP, a desert-steppe resumed (2460–2020 14C years BP). Steppe vegetation was re-established around 2020 14C years BP and seems to have then deteriorated again around 1000 14C years BP. The general trend of aforementioned climatic changes is proposed here to have been modulated by the insolation changes. Specifically, the insolation started to increase around 15,000 years BP and peaked around 9000 years BP when the obliquity-driven seasonality reached a maximum with the summer insolation being about 8% more than the present. As a result, tropical Holocene SST increased steadily from ~10,000 to ~6,000 years BP, thus effectively strengthening the East Asian summer monsoon. In addition, the documented high temperatures from 10,000 to 4000 years BP in high northern latitudes might have weakened the strength of the winter monsoon and thus enhanced the strength of the summer monsoon probably via lengthening of the rainy season, directly contributing to the “megahumid” climate between 10,000 and 4000 years BP in the western part of the Chinese Loess Plateau.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Holocene climate; Chinese Loess Plateau; Vegetation history

1. Introduction

1.1. Significance of Holocene climate changes

Possible human-induced climate changes and adverse human impacts on environment alert us to assess
future climatic stability and environmental sustainability. However, this assessment requires a solid understanding of the natural climatic variability on different time scales. The Holocene (i.e., past 10,000 years) is of particular interest in that regard because the climatic boundary conditions are similar to those experienced now and possibly in the near future. To understand the global Holocene climate changes and the controlling mechanisms, the temporal and spatial climatic records are needed from different and climatically sensitive regions. The semi-arid Chinese Loess Plateau has been demonstrated to be one of the most sensitive areas to large-scale climate changes (Feng et al., 1993; Li et al., 1988; Feng et al., 2004). Specifically, loess deposition itself on the plateau is a result of interactions between the winter and summer monsoons. That is, the winter monsoon brings dust onto the plateau and the summer monsoon-associated vegetation retains the dust (loess). Therefore, the reconstruction of the Holocene climate changes in the Chinese Loess Plateau is expected to significantly improve our understanding of the mechanisms and processes of large-scale climate changes. This study focuses on Holocene sequences in the western part of the plateau where higher-resolution reconstruction can be achieved simply because the sequences are much thicker (up to 5 m) than in the eastern part of the plateau. The Liupan Mountain is the dividing line between the western and eastern parts (Fig. 1). We hope that this regional climatic reconstruction can be useful in depicting the large-scale patterns of Holocene climate changes and thus in facilitating our understanding of the mechanisms.

Fig. 1. Map showing the vegetation zones in the western part of the Chinese Loess Plateau. The locations of six reviewed sites (see Fig. 2A and B) and two focal sites (Sujiawan and Dadiwan) are also shown.
1.2. Modern physiographic settings

Because of the interaction between the winter and summer monsoons, there is SE–NW gradient of modern climate in the Chinese Loess Plateau (Li et al., 1988). That is, both mean annual temperature and precipitation decrease gradually from southeast (10 °C and 600 mm) to northwest (7 °C and 350 mm), whereas the aridity (ratio of evaporation to precipitation) increases from southeast (1.0) to northwest (3.0). The vegetation closely follows the aridity trend (Fig. 1): broadleaved deciduous forest in the southeastern corner, forest-steppe in the southeastern part, steppe in the northwestern part, and desert-steppe in the northwestern corner.

The western part of the Chinese Loess Plateau is notoriously vulnerable to environmental degradation due to four natural factors: steeply-sloped topography, fine-textured loessial soils, limited precipitation and most importantly, unique hydrogeomorphic conditions (Zhao et al., 2004). The unique hydrogeomorphic conditions refer to the fact that over 50% of precipitation occurs during July, August and September with over 60% of it being rainstorms whose intensity often exceeds the soil infiltration capacity. These factors suggest that not only is the limited precipitation unevenly distributed throughout the growing seasons but also gets little chance to infiltrate into the fine-textured loessial soils on the steeply-sloped topography. The extensive human removal of natural vegetation and the intensive human alterations of the soil hydrological properties (e.g., compaction) have further deteriorated the hydrogeomorphic conditions and consequently exacerbated the existing vulnerable ecological conditions. It is thus not a surprise to see that major rivers (except the Yellow River) have no or very little discharge for most time (approximately 300 days) of a year (Wu and Jiang, 1998), and croplands and treeless wastelands dominate the landscapes.

1.3. Previous studies of upland Holocene sequences

Although the loess/paleosol sequences in the Chinese Loess Plateau have been a scientific focal point of international Quaternary communities for the past 20–30 years, the top (Holocene) portions of these sequences did not get much attention because of difficulties in establishing high-resolution 14C chronology based on bulk samples of thin Holocene sequences (Liu, 1987). However, the much thicker Holocene sequences (up to 5 m) along the northern border of the Loess Plateau have provided scientists with opportunities to overcome the chronological problem. That is, charcoal (the best AMS dating target) might have been preserved and soil humate might have survived from later contamination due to a higher rate of loess deposition. Consequently, the northern border of the Loess Plateau has become a Holocene-research hotspot (e.g., An et al., 1993; Gao et al., 1993; Zhou et al., 1991, 1996, 1999; An et al., 2000). Our research takes advantage of the relatively thick lowland Holocene sequences that occur as a series of swamp–wetland–eolian complexes in the western part of the Chinese Loess Plateau to obtain relatively high-resolution reconstructions of the Holocene climate changes based on more robust chronologies.

Before we discuss these lowland swamp–wetland–eolian complexes, we want to provide a brief review of six previously dated Holocene upland sequences in the western part of the Loess Plateau. Three of these relatively well-dated sequences are based on data from magnetic susceptibility and particle size (An et al., 1993; Chen et al., 1999; Wang, 2001), which are proxies for summer and winter monsoons, respectively (An et al., 1991; Maher, 1998; Chen et al., 2000). The paleoclimatic records from Caoxian (on flat-topped highland), Jiuzhoucai (on top of a loess hill near Lanzhou), and Baxie (on the third terrace of the Datong River—a major branch of the Yellow River) show that the climate started to ameliorate around 10,000–8000 14C years BP and deteriorated around 5000–3000 14C years BP (Fig. 2A). Three roughly-dated pollen sequences at Sale (Linxia) on Saleshan Mountain (Wang and Xu, 1988), Dangxian (Huining) on Huajialing Ridge (Tang et al., 1990), and Maying (Tongwei) on Huajialing Ridge (An, 2004) from mountainous areas (2000–2400 m above sea level) are summarized in Fig. 2B. The data show that the vegetation changed from glacial loess-associated steppe to Holocene paleosol-associated forest (9300–5650 14C years BP), and then deteriorated afterward in the Saleshan Mountain. The vegetation in the Huajialing Ridge changed from glacial loess-associated steppe to Holocene paleosol-associated forest-steppe (from 6510 +14C years BP to 3780 +14C years BP). It should be particularly noted that the early–middle Holocene paleosol is well-preserved in the flat-topped Huajialing Mountains (see Fig. 1) and also on the flat-topped highlands (e.g., Caoxian). It survived from slope erosion only on gentle tops of loess hills (e.g., Jiuzhoucai) and is well preserved on valley terraces. The paleosol should have formed synchronously in the western part of the Loess Plateau although the chronologies do not provide a neat age bracket for the paleosol formation. Considering the inherently large errors resulting from the mixing processes of time-diachronous organic matter in the aforementioned six upland sequences, 10,000–8000 14C
years BP and 5000–3000 14C years BP can be taken as the approximate bracket ages of the upland paleosols in the western part of the Loess Plateau.

2. Field work and laboratory methods

2.1. Field survey of valley Holocene sequences

In contrast to the above-described upland Holocene sequence, the valley Holocene sequence in the western part of the Chinese Loess Plateau consists of an upper loess–soil complex and a lower wetland–swamp complex (see inset photo 1 in Fig. 3). The lower wetland–swamp complex stands out so striking in this semi-arid environment that the senior author (Feng) and his colleagues recently (2000–2003) conducted 10 fieldtrips to survey the extent of the complex for reconstructing the paleo-environment. Fig. 3 shows the field-surveyed distribution of the lower complex. It can be concluded, based on the surveyed geomorphic settings of the complex, that the actual extent of the lower complex is much larger. It should also be noted...
that the lower complex is thickened by fluvial aggradations and expressed as a wetland–swamp–fluvial complex in the major branch rivers (e.g., at Dadiwan; see inset photo 2 in Fig. 3).

2.2. Valley Holocene chronosequences

Fig. 4 shows five representative sections that were AMS 14C dated (see Fig. 3 for site locations). The lower wetland–swamp complex at four of these five sections (A: Sujiawan; B: Dingxi; C: Maying; and D: Shanjiaji) is a greyish-blue clayey silt unit. Aquatic mollusks comprise much of the complex, and carbonate powder and half-decomposed organic matter are readily visible. This complex is well bracketed by two AMS dates at the Sujiawan section: 8885±55 and 3805±45 14C years BP. All the dates of the complex from other sections fall within this age bracket (Feng et al., 2004). The upper loess–soil complex covers the dust-depositing and soil-forming history of the past ~4000 years. The stratigraphically traceable equivalent to the lower wetland–swamp complex in the major branch rivers is a fluvially aggraded and thickened wetland–swamp–fluvial complex, which is well expressed at the Dadiwan section (see Section E in Fig. 4).

2.3. Laboratory methods

We have conducted systematic laboratory analyses on the samples taken from two representative sections,
Sujiawan and Dadiwan, to obtain proxy data for reconstructing the Holocene history of the vegetation variations and the associated environmental changes. Sampling intervals were 2 cm in the lower portion (300–400 cm deep), 5 cm in the upper portion (50–300 cm deep) and 10 cm in the top 50 cm within the Sujiawan section. All the samples were taken at 2-cm intervals within the Dadiwan section. The carbonate concentration was measured using a Bascomb Calcimeter and the organic matter with the titration method (Singer and Janitzky, 1987). The particle size of bulk samples was measured using a Malvern laser diffraction particle size analyzer and snails were identified with reference to resource manual. For pollen analysis, the sediments were treated with HCl (10%), NaOH (10%) and HF (36%). Exotic *Lycopodium* tablets were added for calculation of pollen concentration (Moore et al., 1991; Wang et al., 1995). Over 200 pollen grains were identified in all of the samples except for five samples in which only 100–200 pollen grains were identified. A total of more than 60 pollen and spore types were distinguished.

3. Results and discussions

The two representative sections can compensate for each other’s shortcomings. That is, the lower wetland–swamp complex at the Sujiawan section is well age-constrained but the resolution is compromised (only 1 m thick). The chronology of the equivalent to the wetland–swamp complex at the Dadiwan section is not satisfactory due to fluvial aggradation-resulted local age reversals, but this fluvial aggradation-thickened complex (3 m thick) provides a higher stratigraphic resolution. In addition, the upper loess–soil complex at the Dadiwan section seems incomplete or severely disturbed, but the upper complex at the Sujiawan section appears to contain a complete record of the history of the late Holocene vegetation variations and the associated environmental changes.

3.1. Modern vegetation and pollen representation

To reconstruct the Holocene vegetation variations and the associated environmental changes, we need to understand the relationships between modern pollen deposition and its associated vegetation. The following is a brief summary of the published descriptions of modern pollen–vegetation relationships pertinent to the western part of the Loess Plateau.

3.1.1. Temperate deciduous forest

The dominant tree taxa include *Quercus, Betula, Alnus, Acer, Ulmus, Populus* and *Pinus*. The pollen spectra of the surface soil are dominated by the deciduous forest taxa (9.0–50.0%), *Pinus* (5.9–54.6%) and *Artemisia* (3.9–58.8%), accompanied by Gramineae (1.1–10.0%) and Chenopodiaceae (1.0–11.5%) (Wang et al., 1996; Zhao et al., 1998; Xu et al., 2000).

3.1.2. Temperate steppe forest

The dominant plant taxa are *Pinus, Quercus, Betula, Ulmus, Populus, Gramineae, Artemisia, Leguminosae, Lespedeza* and *Caragana*. The modern pollen spectra are co-dominated by the herb component (20.0–80.0%) and the arboreal component (15.0–40.0%). The arboreal
component includes *Pinus* (5.1–42.2%), *Quercus* (1.1–11.9%) and *Betula* (0.6–17.0%), and the herb component includes *Artemisia* (20.8–50.6%), *Chenopodiaceae* (6–15.0%), and Gramineae (2.1–8.6%) (Yan and Xu, 1989; Tong et al., 1996; Li, 1998; Liu et al., 1999; Ma, 2004; Ma et al., 2004).

3.1.3. Temperate steppe

The modern pollen spectra are dominated by the herb component (62.0–93.0%) with a minor *Pinus*-dominated arboreal component (7.0–28.0%). The herb component includes *Artemisia* (36.5–80.0%), *Compositae* (10–20%), *Chenopodiaceae* (14.9–46.6%), and Gramineae (2.2–10.0%) (Li, 1998; Liu et al., 1999).

3.1.4. Temperate desert steppe

The high percentages of *Artemisia* (20.6–55.8%) and *Chenopodiaceae* (23.1–48.6%) properly represent the dominance of these two herbaceous taxa, whereas *Stipa* (Gramineae) is under-represented. The pollen percentage of Gramineae, as well as the percentages of the arboreal component, is below 10% (Yan and Xu, 1989; Li, 1998).

It should be added that major coniferous trees (e.g., *Pinus*, *Abies* and *Picea*) are normally over-represented (Ma et al., 2004) and *Ulmus* is under-represented in the modern pollen spectra (Li, 1998), while *Quercus* is properly represented (Zhao et al., 1998). For example, large patches of *Ulmus* trees may only yield <10% of *Ulmus* pollen in the surface samples. On the other hand, even up to 30% of coniferous tree pollen cannot be interpreted as a reflection of local existence of forest or forest-steppe if other tree taxa are lacking (Li, 1998; Ma et al., 2004).

3.2. Proxy data at the Sujiawan section

3.2.1. Detailed chronosequence

The Holocene sequence at the Sujiawan section (104°31′22″E, 35°32′20″N; 1950 m a.s.l.) consists of two complexes: an upper loess–soil complex and a lower wetland–swamp complex. The lower complex is a greyish-blue clayey silt unit (about 1 m thick). Nearly horizontal sub-layers were evidently affected by bio-turbation. Aquatic mollusks comprise much of the layer. We have interpreted the layer as a wetland–swamp complex and four charcoal AMS dates well define the period of its deposition. That is, the lower complex was formed between 8880 and 3800 14C years BP (Fig. 5 and Table 1). Below the wetland–swamp complex is a...
strongly gleyed loess unit and a charcoal AMS date was obtained at the depth of 445 cm (12,204 ± 70 14C years BP). Fig. 5 and Table 1 also include the calibrated ages using INTCAL98 (Stuiver et al., 1998).

The upper complex is composed of three Entisols with organic matter-enriched A horizons. The A horizons are characterized by slightly more compaction with observable granular structures and by a darker colour with more rootlet channels than the interbedding loess units. Three charcoal AMS dates were obtained at the depths of 80 cm (1701 ± 44 14C years BP), 90 cm (1930 ± 40 14C years BP), and 295 cm (3730 ± 40 14C years BP). Assuming that the depositional rate was relatively constant from 3805 ± 45 to 1930 ± 40 14C years BP, based on the fact that the percentage of the >63 µm fraction varies very little from 305 cm to 90 cm (see Fig. 5), we obtained an age–depth conversion (i.e., 1 cm = 8.8 years). The interpolated bracket ages are 3560 and 3120 14C years BP for the Entisol SIII and 2900 and 2460 14C years BP for the Entisol SII. The interpolated bottom age of the Entisol SI (at the depth of 100 cm) is 2020 14C years BP (the interpolated ages are parenthesized in Fig. 5).

3.2.2. Non-pollen proxy data

The wetland–swamp complex is characterized by a high content of organic matter (up to 2.5%) and a high concentration of carbonate (up to 70%). The complex is finer than other stratigraphic units, as indicated by the percentage of the coarse (>63 µm) fraction. The extremely high counts of aquatic snails, Gyraulus sibiricus (up to 250 counts/g), and the absence of terrestrial snails (Vallonia tenera) strongly suggest that this unit is a wetland–swamp facies (Fig. 5). It is notable that the wetland–swamp condition started more or less gradually around 8880 14C years BP and ended abruptly around 3800 14C years BP, as indicated by all proxy data in Fig. 5.

The terrestrial snail-rich (V. tenera) upper loess–soil complex is further divided into three Entisol units as observed in field and indicated by the organic matter content. The percentage of the >63 µm fraction (Fig. 5) does not distinguish the organic matter-enriched Entisol A horizons from the interbedding loess units, implying that the eolian flux rate was relatively constant from 3560 to 2020 14C years BP, although organic matter content suggests that the accumulation rates of organic matter were apparently higher during the soil-forming periods of SIII (3560–3120 14C years BP) and SII (2900–2460 14C years BP) than during the loess-depositing intervals (3120–2900 14C years BP and 2460–2020 14C years BP). The SI (100–50 cm) is characterized by a high percentage of >63 µm fraction and also by a high percentage of organic matter content, probably suggesting that the SI was formed under a dusty and yet a denser vegetation condition.

3.2.3. Pollen data

The Sujiawan section is divided into six units based on the pollen assemblages: A, B, C, D, E, and F from the top to the bottom (Fig. 6).

3.2.3.1. Zone F (450–410 cm; 12,200–8880 14C years BP).

This gleyed loess unit underlying the wetland–swamp complex is dominated by the herb component (Artemisia, Compositae, and Gramineae) with an extremely low pollen concentration, suggesting a desert-steppe landscape during the late glacial.

3.2.3.2. Zone E (410–340 cm; 8880–4490 14C years BP).

The lower portion of the wetland–swamp complex is dominated by coniferous tree component (e.g., Pinus, Abies, Picea, Tsuga), accompanied by a considerable amount of deciduous tree pollen (e.g., Betula, Juglans, Ulmus and Celtis) and herb pollen (Gramineae, Compositae, and Artemisia). It is also noticeable that Typha and Cyperaceae are detected in every sample. Both the pollen concentration (up to 8000 grains/g) and the percentage of the tree–shrub component (up to 80%), being the highest in the entire
Fig. 6. Pollen diagrams and pollen biostratigraphic zones at the Sujiawan section with reference to stratigraphy and chronology.
section, suggest the existence of a temperate forest at least in valleys or and nearby highlands during the early part (8880–4490 14C years BP) of the wetland–swamp facies-forming period (8880–3800 14C years BP). It should also be noted that the vegetation was the densest (i.e., achieved highest pollen concentration) between 7100 14C years BP (385 cm) and 4490 14C years BP (340 cm), the former age (7100 14C years BP) being linearly interpolated between two adjacent dates (8885 and 5881 14C years BP).

3.2.3.3. Zone D (340–230 cm; 4490–3120 14C years BP). The pollen spectra are dominated by the herb component with relatively low percentages (20–50%) of the tree–shrub component and relatively low pollen concentrations (1000–3000 grains/g), representing a temperate steppe landscape according to the above-described modern analogue. Zone D can be further divided into two subzones: D2 and D1. Subzone D2 (340–305 cm; 4490–3800 14C years BP) represents a Compositae-dominated steppe landscape and Subzone D1 (305–230 cm; 3800–3120 14C years BP) represents a Gramineae-dominated steppe landscape.

3.2.3.4. Zone C (230–200 cm; 3120–2900 14C years BP). Although the Pinus pollen percentage is rather high (20–40%), the extremely low pollen concentration (200–1000 grains/g) and very low abundance of deciduous tree pollen suggest that the pollen assemblage probably represents a transitional landscape between a steppe and a desert-steppe.

3.2.3.5. Zone B (200–150 cm; 2900–2460 14C years BP). This zone is the paleosol SI1 and characterized by a moderate peak in Pinus (up to 30%). Compositae (up to 50%) dominates the herb component. It is also quite noticeable that Artemisia and Chenopodiaceae start to increase upward and the pollen concentration fluctuates around a moderate mean. The assemblage probably represents a steppe landscape.

3.2.3.6. Zone A (150–50 cm; 2460 to ~1000 14C years BP). This zone includes the paleosol SI (100–50 cm) and the underlying loess unit (150–100 cm) and is characterized by a consistently low pollen concentration and by an extremely high percentage (about 80%) of herbs. This zone can be further divided into two subzones: A2 and A1. Subzone A2 (loess unit; 150–100 cm; 2460–2020 14C years BP) contains more Nitraria, Ephedra and Artemisia than Subzone A1 (paleosol SI; 100–50 cm; 2020 to ~1000 14C years BP). The former (Subzone A2) may represent a desert-steppe landscape and the latter (Subzone A1) may represent a steppe landscape.

3.3. Proxy data at the Dadiwan section

3.3.1. Detailed chronosequence

The Dadiwan section (35°00′47.3″N, 105°54′53.3″ E, 1471 m a.s.l.) is a stratigraphically traceable (we actually traced) equivalent to the wetland–swamp complex of the Sujiawan section. It is a wetland–swamp–fluvial complex that is overlain by a surface Mollisol (0–115 cm) with an A–B–C profile and underlain by a fluvially-altered loess unit (450–500 cm). The wetland–swamp–fluvial complex (115–450 cm) includes three sub-units: (1) a pedogenically-altered wetland-facies upper layer (115–170 cm), (2) a wetland–fluvial-facies middle layer (170–355 cm), and (3) a wetland–swamp-facies bottom layer (355–450 cm). The middle layer (170–355 cm) contains four wetland and fluvial alternating couplets. Local reversals of the 14C dates are relatively well documented at this section. For example, a charcoal date (5136±45 14C years BP) at the upper position (131–132 cm) is older than two charcoal dates (4955±44 and 5441±51 14C years BP) at the lower positions (170–171 cm and 190–191 cm) in the upper portion of the complex. Four charcoal dates are completely reversed in the lower portion of the complex (285–356 cm) and an age reversal (11,850 14C years BP at 460 cm and 11,190 14C years BP at 472 cm) also occurs in the fluvially-altered loess at the bottom of the section.

Our interpretation of these systematic age reversals is that the major flooding-related fluvial processes eroded older charcoal from the uplands and re-deposited them on the floodplains. In each of the three reversed sequences (130–192 cm, 285–356 cm, and 460–474 cm), the younger dates marked with calibrated ages both in Fig. 7 and Table 2 are considered to represent the real ages of then-floodplain surfaces. It should be noted that one snail age (10,279 14C years BP at 240–242 cm) and one pollen age (14,622 14C years BP at 385–387 cm) are anomalously too old, and two soil-humate dates (5371±50 14C years BP at 100–102 cm and 9007±50 14C years BP at 332–334 cm) are also somewhat too old in comparison with the charcoal dates (see Table 2). These four dates (marked with * in Table 2) are not plotted in Fig. 7.

It should be particularly noted that although the local age reversals are obvious, the overall chronosequence is reasonably well supported by those charcoal dates. Specifically, the upper portion of the wetland–swamp–fluvial complex (130–190 cm) was formed
around 5000^14C^ years BP and the lower portion (285–330 cm) around 8000^14C^ years BP. Here, we use two charcoal dates (4955±44^14C^ years BP at 170 cm and 7539±49^14C^ years BP at 355 cm) to linearly interpolate and extrapolate the ages of the starting point (115 cm) and the ending point (450 cm) of the wetland–swamp–fluvial complex. We also interpolated the ages of the four field-observed and photo-displayed flooding events (at ∼190 cm, ∼230 cm, ∼285 cm, and ∼330 cm). This linear interpolation and extrapolation is based on two observations: (1) the overall trend of the >63 μm fraction within the wetland–swamp–fluvial complex (115–450 cm) does not vary very much, especially considering the fact that the small peaks of the >63 μm fraction were generated by short-lived flooding-related fluvial processes; and

![Fig. 7. Dadiwan section: photo, pedo- and lithostratigraphy, AMS dates and interpolated ages (parenthesized ages). The proxy data include organic matter content (OM), carbonate concentration (CaCO3), percentage of >63 μm fraction (>63 μm), counts of aquatic mollusk (Gyrulaus sibiricus), total aquatic mollusk, and terrestrial mollusk (Vallonia tenera).](image)

Table 2
AMS dates of the Dadiwan Holocene sequence (all dated at the NSF AMS Facility)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Lab no.</th>
<th>Depth (cm)</th>
<th>Dated material</th>
<th>^14C^ age (1σ)</th>
<th>Cal. age (1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDW2</td>
<td>AA43792</td>
<td>131–132</td>
<td>Charcoal</td>
<td>5136±45</td>
<td></td>
</tr>
<tr>
<td>DDW170</td>
<td>AA44889</td>
<td>170–171</td>
<td>Charcoal</td>
<td>4955±44</td>
<td>5729–5612</td>
</tr>
<tr>
<td>DDW190</td>
<td>AA44887</td>
<td>190–191</td>
<td>Charcoal</td>
<td>5441±51</td>
<td>6291–6197</td>
</tr>
<tr>
<td>DDW5</td>
<td>AA43795</td>
<td>285–286</td>
<td>Charcoal</td>
<td>8771±81</td>
<td></td>
</tr>
<tr>
<td>DDW6</td>
<td>AA43796</td>
<td>300–301</td>
<td>Charcoal</td>
<td>8352±62</td>
<td></td>
</tr>
<tr>
<td>DDW7</td>
<td>AA43797</td>
<td>330–331</td>
<td>Charcoal</td>
<td>8208±52</td>
<td></td>
</tr>
<tr>
<td>DDW8</td>
<td>AA43798</td>
<td>355–356</td>
<td>Charcoal</td>
<td>7539±49</td>
<td>8388–8334</td>
</tr>
<tr>
<td>DDW460</td>
<td>AA43791</td>
<td>460–461</td>
<td>Charcoal</td>
<td>11,850±290</td>
<td></td>
</tr>
<tr>
<td>DDW472</td>
<td>AA49110</td>
<td>472–473</td>
<td>Charcoal</td>
<td>11,190±290</td>
<td>13,788–12,860</td>
</tr>
<tr>
<td>DDW1</td>
<td>AA43791</td>
<td>100–102</td>
<td>Soil humate</td>
<td>5371±50</td>
<td></td>
</tr>
<tr>
<td>DDW4</td>
<td>AA43794</td>
<td>240–242</td>
<td>Snails</td>
<td>10,279±74</td>
<td></td>
</tr>
<tr>
<td>DDW332</td>
<td>AA49112</td>
<td>332–334</td>
<td>Soil humate</td>
<td>9007±50</td>
<td></td>
</tr>
<tr>
<td>DDW9</td>
<td>AA43799</td>
<td>385–387</td>
<td>Pollen</td>
<td>14,622±97</td>
<td></td>
</tr>
</tbody>
</table>
(2) the charcoal samples for these two dates used for the linear interpolation and extrapolation (4955 ± 44 14C years BP and 7539 ± 49 14C years BP) exactly bracket the fluvial process-dominated wetland–fluvial-facies middle layer (170–355 cm). That is, the upper bracket age (4955 ± 44 14C years BP) was obtained at the bottom of the pedogenically-altered wetland-facies (non-fluvial) upper layer (at 170 cm) that immediately overlies the wetland–fluvial-facies middle layer (170–355 cm), and the lower bracket age (7539 ± 49 14C years BP) was obtained at the top of the wetland–swamp (non-fluvial) bottom layer (at 355 cm) that immediately underlies the wetland–fluvial-facies middle layer (170–355 cm). This implies that these samples were not reworked by later flooding-related fluvial processes. The calculated age–depth conversion is: 1 cm= 14 years and the linearly interpolated and extrapolated bracket ages for the wetland–swamp–fluvial complex are 4120 14C years BP (at 115 cm) and 8850 14C years BP (at 450 cm). The interpolated ages for those four flooding events are: ∼5230 14C years BP (at ∼190 cm that was actually dated at 5441 ± 51 14C years BP), ∼5790 14C years BP (at ∼230 cm), ∼6560 14C years BP (at ∼285 cm), and ∼7090 14C years BP (at ∼330 cm), each of them being predated by a depositional interval of aquatic snail-rich wetland facies (see Fig. 7). It should be stressed that the bracket ages of the wetland–swamp–fluvial complex (4120 14C years BP and 8850 14C years BP) at the Dadiwan section are in reasonable agreement with the bracket ages of its equivalent (i.e., wetland–swamp complex) at the well-dated Sujiawan section (3805 14C years BP and 8885 14C years BP), suggesting that these linearly interpolated and extrapolated ages are acceptable again considering the error bars and the calibration-related uncertainties of the dates.

3.3.2. Non-pollen proxy data

The aquatic snail-rich wetland–swamp–fluvial complex (115–450 cm) is characterized by relatively high carbonate concentrations. The organic matter content is relatively high in the pedogenically-altered wetland-facies upper layer (115–170 cm) and in the wetland–swamp-facies bottom layer (355 to 450 cm). Again, the percentage of the >63 μm fraction indicates that the wetland–swamp condition started gradually from the top (at the depth of 450 cm) of late glacial alluvial loess and ended abruptly at the inferred age of 4120 14C years BP (i.e., at the depth of 115 cm). It is notable that the type aquatic species, G. sibiricus, well marks four periods of land-surface stability as indicated by wetland–swamp depositional facies (see photo in Fig. 7), each of which immediately predated a major flooding event as indicated by the percentage of the >63 μm fraction. The surface Mollisol with a complete A–B–C profile (0–115 cm) is not dated for lack of charcoal, and the soil-forming processes (e.g., bioturbation and clay translocation) in the A and B horizons made the top 50 cm unsuitable for a high-resolution reconstruction.

3.3.3. Pollen data

The section can be divided into six units based on the pollen assemblages: A B, C, D, E, and F from the top to the bottom (Fig. 8).

3.3.3.1. Zone F (500–450 cm; ∼11,190 ± 290 14C years BP). The pollen spectra are overwhelmingly dominated by herbs (up to 90%) with a very low pollen concentration (100–500 grains/g). The herbs are Compositae (20–60%) and Artemisia (30–40%) with detectable amounts of Crepis, Humulus, and Zygophyllum. Pinus pollen was also found but the percentage is extremely low (1–5%). This assemblage most likely represents a steppe landscape or a desert-steppe landscape.

3.3.3.2. Zone E (450–355 cm; 8850–7540 14C years BP). The dominant herb component includes Compositae (up to 40%) and Artemisia (up to 35%). But, besides Pinus pollen, other tree and shrub taxa (5–30%) start their appearance (e.g., Sabina, Cupressaceae, Juglans, Quercus, Ulmus, Rosaceae) with Crepis and Zygophyllum being as high as 10%. The pollen concentration fluctuates between 300 and 1500 grains/g. The assemblage probably represents a forest-steppe landscape.

3.3.3.3. Zone D (355–170 cm; 7540–4950 14C years BP). This zone can be further divided into three subzones: D3, D2, and D1. Subzone D3 (355–285 cm; 7540 to ∼6560 14C years BP) is characterized by the dominance of coniferous tree taxa (30–80%) including Pinus (20–80%), Picea and Abies (5–15%), Tsuga (up to 5%) and Sabina (5–20%). Although the percentage of tree–shrub pollen reaches the highest in the entire section, the pollen concentration remains relatively low (500–1500 grains/g). It is most likely that a Pinus-dominated forest occupied the area or at least was proximate to the site. Subzone D2 (285–230 cm; 6560–5790 14C years BP) has the highest pollen concentration (up to 6500 grains/g) and the highest deciduous tree pollen percentage (up to 40%) with a dramatic appearance of...
Fig. 8. Pollen diagrams and pollen biostratigraphic zones at the Dadiwan section with reference to stratigraphy and chronology.
Typha (up to 30%) and Cyperaceae (up to 30%). The pollen spectra are co-dominated by the tree–shrub component and the herb component. This pollen assemblage represents a temperate deciduous forest landscape with maximum density and diversity during the entire Holocene period.

Subzone D1 (230–170 cm; 5790–4950 14C years BP) has a relatively low pollen concentration (500–1500 grains/g) and both the percentage of the herb pollen and the percentage of coniferous tree pollen (especially Pinus) increase at the expense of other tree pollen, whereas Typha and Cyperaceae nearly completely disappear. The assemblage probably represents a Pinus-dominated forest-steppe landscape.

3.3.3.4. Zone C (170–115 cm; 4950–4120 14C years BP). The fluctuating high pollen concentration values (up to 4000 grains/g) and the proportional shares of the pollen spectra by the tree–shrub component (30–40%) and the herb component (60–70%) indicate that this pedogenically-altered wetland-facies layer was formed under the second densest vegetation cover in the entire section. The increased Ulmus pollen percentage and decreased Pinus pollen percentage, along with higher Gramineae (10–60%) and Artemisia (5–30%) percentages and lower Compositae (5–10%) and Chenopodiaceae (5–10%) percentages, suggest an Ulmus-dominated forest-steppe landscape.

3.3.3.5. Zone B (115–55 cm; 4120 to ~2000+? 14C years BP). This coarse loess unit or C horizon of the surface Mollisol contains predominantly herb pollen (up to 70%). Pinus (10–25%) and Ulmus (5–10%) are the predominant tree taxa with detectable amounts of other tree pollen and some shrub pollen (e.g., Nitraria). Although the assemblage looks like a representative of a forest-steppe landscape, the extremely low pollen concentration (200–300 grains/g) seems to suggest a steppe landscape. It should be particularly noted that the upper age (2000+? 14C years BP at the depth of 50 cm) is inferred based on the reported upland Holocene sequences in which 2000 14C years BP marks the beginning of the most recent major climatic amelioration of the Holocene in the Chinese Loess Plateau (Liu, 1987).

3.3.3.6. Zone A (55–0 cm; ~2000+?–0? 14C years BP). The pollen concentration in this surface Mollisol A and B horizons is relatively high (1000–2500 grains/g) and the dominant herb component is accompanied with Ulmus (up to 20%), probably representing an Ulmus-dominated forest-steppe landscape.

Fig. 9. Comparison between Dadiwan and Sujiawan sections with reference to the insolation trend in the middle latitudes (ΔS) and the associated strength of the East Asian Monsoon (ΔM).
3.4. Summary

3.4.1. Early-middle Holocene

The data from the Sujiawan section show that after the massive loess deposition of the late glacial, the wetland–swamp facies was formed from 8880 to 3800 14C years BP. The pollen assemblages indicate the existence of a temperate forest during the early part (8880–4490 14C years BP) and the existence of a Compositae-dominated steppe during the late part (4490–3800 14C years BP) with the interval between 7100 and 4490 14C years BP having the densest and most mesic vegetation of the Holocene (Fig. 9). However, aquatic snails reached their maximum abundance from 7100 to 3800 14C years BP. Our interpretation is that the optimal ecological condition (7100–4490 14C years BP) was the delayed response of the vegetation to the climate amelioration that had started around 9000 14C years BP and that the maximal abundance of aquatic snails (7100–3800 14C years BP) was the delayed response of snail communities to the development of wetland–swamp environmental condition.

The general trend of the early-middle Holocene environmental changes expressed at the Sujiawan section (100 cm thick) is further detailed by the laterally traceable equivalent (i.e., wetland–swamp–fluvial complex) at the Dadiwan section (335 cm thick) where a higher resolution reconstruction was obtained. Specifically, a forest-steppe dominated from 8850 to 7540 14C years BP and the existence of a Compositae-dominated steppe during the late part (4490–3800 14C years BP) with the interval between 7100 and 4490 14C years BP having the densest and most mesic vegetation of the Holocene (Fig. 9). However, aquatic snails reached their maximum abundance from 7100 to 3800 14C years BP. Our interpretation is that the optimal ecological condition (7100–4490 14C years BP) was the delayed response of the vegetation to the climate amelioration that had started around 9000 14C years BP and that the maximal abundance of aquatic snails (7100–3800 14C years BP) was the delayed response of snail communities to the development of wetland–swamp environmental condition.

3.4.2. Late Holocene

The Sujiawan section recorded much more details regarding the late Holocene vegetation variations and the associated environmental changes. As indicated by organic matter content, carbonate concentration, particle size, and aquatic snails shown in Figs. 5 and 6, the wetland–swamp complex ended abruptly at 3800 14C years BP. The subsequent loess unit (3800–3560 14C years BP) and the overlying paleosol SIII (3560–3120 14C years BP) are characterized by steppe pollen assemblages. A desert-steppe dominated the landscape from 3120 to 2900 14C years BP. After a period of vegetation improvement (steppe) during the time of paleosol SII formation (2900–2460 14C years BP), a desert-steppe resumed (2460–2020 14C years BP). A steppe vegetation was re-established around 2020 14C years BP and seems to have deteriorated again around an inferred age of 1000 14C years BP (at the depth of 50 cm). The late Holocene loess-paleosol couples appear to have a quasi-periodicity of 350±100 years. It should be stressed that the organic matter content and field-observed pedostratigraphy well identify these late Holocene paleosols and loess units, but pollen assemblages only show general trends of the late Holocene environmental changes.

4. Discussion on forcing mechanisms

The Holocene climatic trend in the western part of the Chinese Loess Plateau seems to have been modulated by the insolation trend. The insolation started to increase around 15,000 years BP (calendar years) and peaked around 9000 years BP when the obliquity-driven seasonality reached the maximum with the summer insolation being about 8% more than the present (COHMAP Members, 1988; Kutzbach and Gallimore, 1988; Clemens et al., 1996; Koutavas et al., 2002). As a result, tropical Holocene SST increased steadily from ∼10,000 to ∼6000 years BP (Kiennast et al., 2001). This steady increase in tropical SST might have effectively strengthened the East Asian summer monsoon as the COHMAP project predicted.
 Members, 1988), resulting in the “megahumid” climate in the western part of the Chinese Loess Plateau (Feng et al., 2004, 2005, 2006). Kremenetski et al. (1998) and McDonald et al. (2000) reported that the post-glacial boreal-forest development in Siberia commenced by 10,000 cal. years BP, advanced southward between 9000 and 7000 cal. years BP and retreated northward between 4000 and 3000 cal. years BP. The forest advancement was attributed to a number of temperature-related factors including heightened summer insolation, ice sheet demise, sea-ice cover reduction, and landward penetration of warm North Atlantic water. The forest retreat was interpreted to have resulted from declining summer insolation and cooling arctic water under a neoglacial regime. The timing consistency between the western part of the Chinese Loess Plateau and Siberia implies that the East Asian monsoon-related precipitation in the western part of the Chinese Loess Plateau has probably been modulated by high northern-latitude temperature. Specifically, high temperatures in high northern latitudes might have weakened the strength of the winter monsoon and thus enhanced the strength of the summer monsoon probably via lengthening of the rainy season, directly contributing to the “megahumid” climate between 10,000 and 4000 years BP in the western part of the Chinese Loess Plateau.

One more point we want to make is about the mid-Holocene Climatic Optimum. All published data indicate that the Climatic Optimum (i.e., warm and wet) occurred approximately between 8000 and 5000 years BP during the Megathermal period that lasted approximately from 9000 to 3000 years BP in arid and semiarid North China (see Shi and Kong, 1992; Shi et al., 1993; Wu et al., 1994; Feng et al., 1993, 2004, 2006, and the references thereafter). The Climatic Optimum occurred between 7100 and 4490 14C years BP in the western part of the Chinese Loess Plateau, as represented by the densest and most mesic vegetation of the Holocene at the Siujiangan section. The time frame of the Climatic Optimum can be further narrowed down by the higher-resolution data from the Dadiwan section, i.e. the highest pollen concentration (up to 6500 grains/g) and the highest deciduous tree pollen percentage (up to 40%) with a dramatic appearance of Typha (up to 30%) and Cyperaceae (up to 30%) between 6560 and 5790 14C years BP represent a temperate deciduous forest landscape with maximum density and diversity of the entire Holocene period. The Climatic Optimum between 6560 and 5790 14C years BP is most likely the result of the Holocene peak amplitude of the seasonal cycle of insolation in the Northern Hemisphere at about 6000 years BP, i.e. the peak amplitude at around 6000 years BP increased the sea–land temperature contrast, thus further enhancing the East Asian summer monsoon (Kutzbach and Liu, 1997; Brostrom et al., 1998). This scenario is directly supported by the maximum lake levels occurring in India during the increased summer insolation period at around 6000 years BP (Enzel et al., 1999). Indirect evidence supportive for this scenario is the maximum Holocene aridity in South America (Baker et al., 2001) and the weakening Australian monsoon during the decreased summer insolation period in the Southern Hemisphere at around 6000 years BP (Steig, 1999; Koutavas et al., 2002).

Acknowledgement

This research is financially supported by three NSFC Grants (No. 40331012, No. 40025105, and No. 404321101), and also by two NSF grants (EAR 0402509 and BCS 00-78557). Two anonymous reviewers are sincerely thanked for their constructive comments.

References

